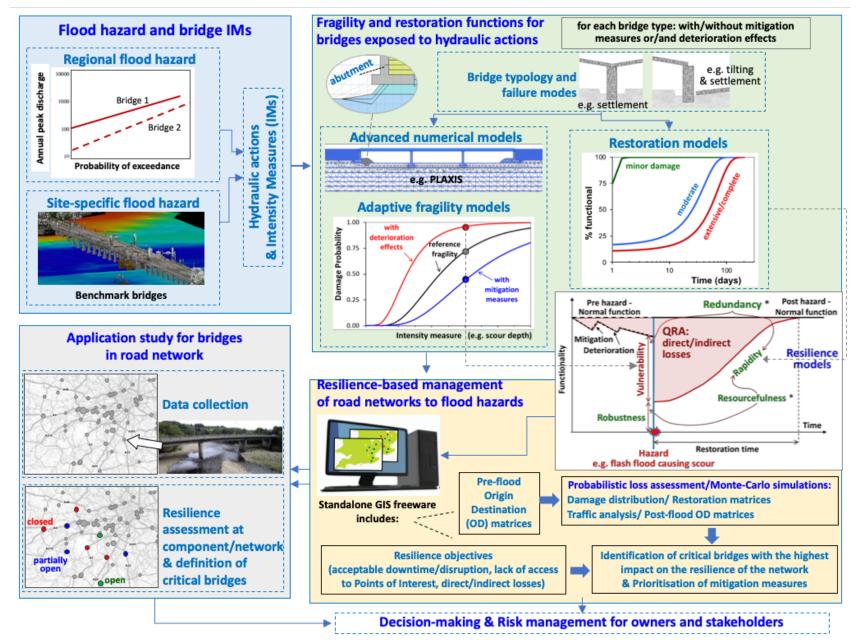


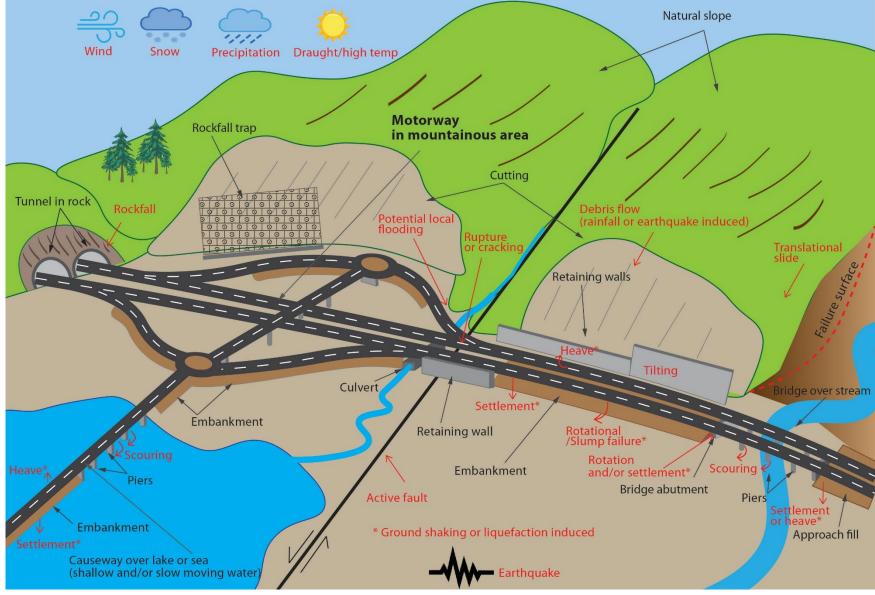
University of Surrey Faculty of Engineering and Physical Sciences Department of Civil and Environmental Engineering

Vulnerability, risk and resilience assessment of bridges to hydraulic hazards


Dr Stergios A Mitoulis, Associate Professor

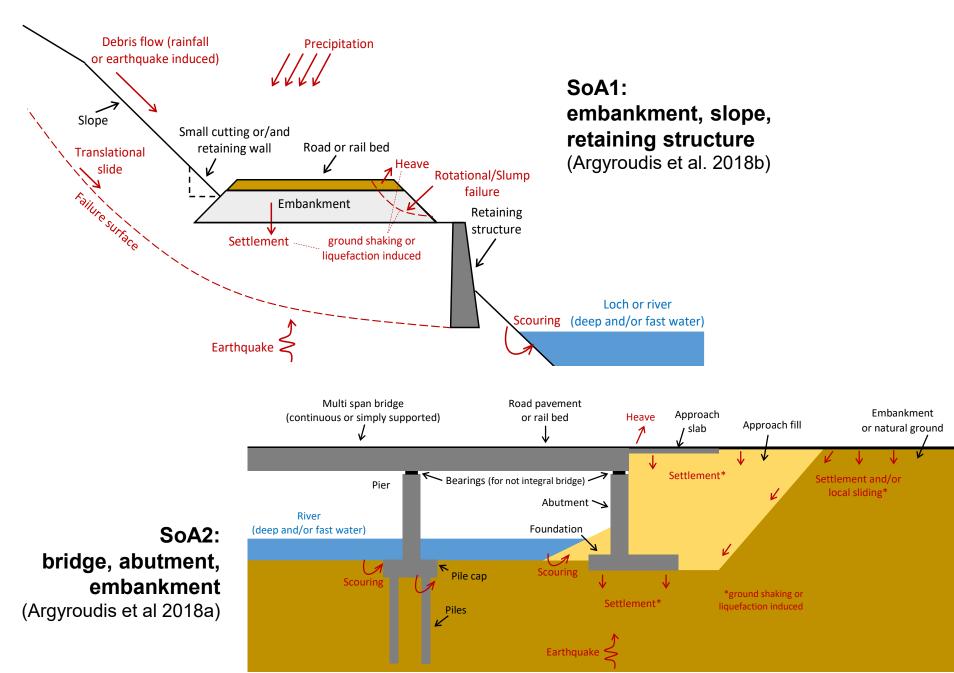
s.mitoulis@surrey.ac.uk

Dr Sotiris Argyroudis, Marie-Curie Research Fellow s.argyroudis@surrey.ac.uk

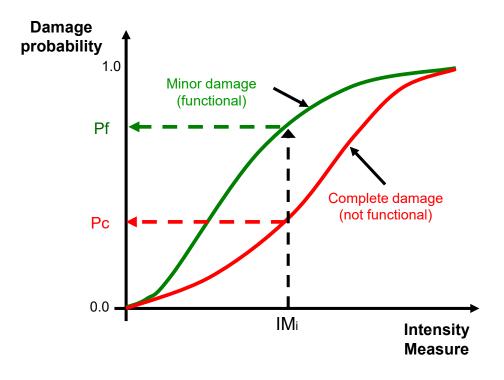

Visit : www.infrastructuResilience.com

Quantitative risk and resilience assessment

* Redundancy and Resourcefulness enhance Rapidity and Robustness and thus reduce the Vulnerability of bridges and transportation networks


Transport Systems of Assets (SoA) in diverse ecosystems

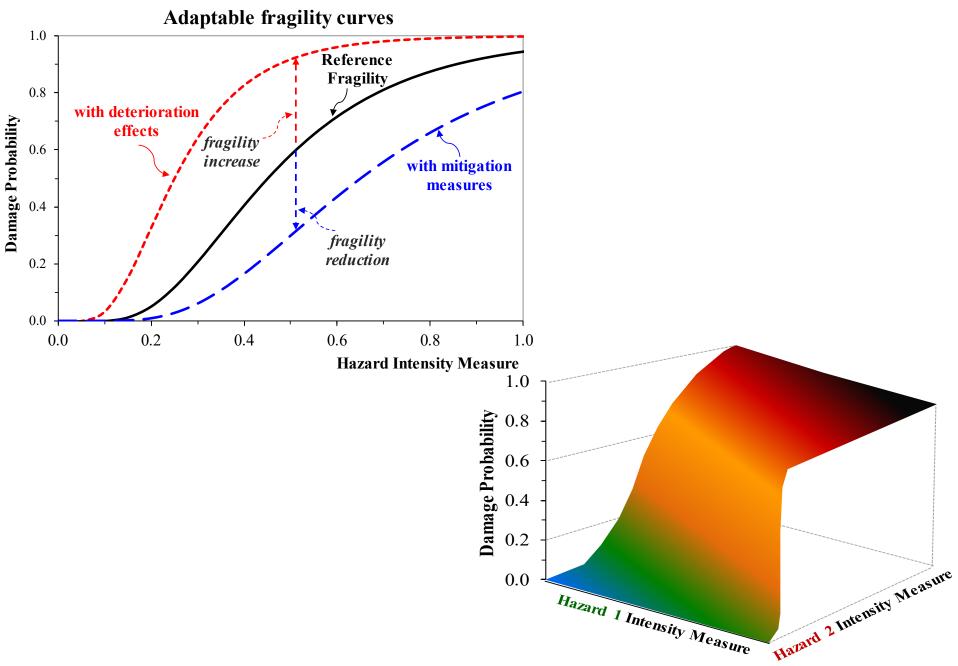
Motorways in mountainous areas


Argyroudis S, Mitoulis SA, Winter M, Kaynia AM (2019). Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience. Reliability Engineering and System Safety

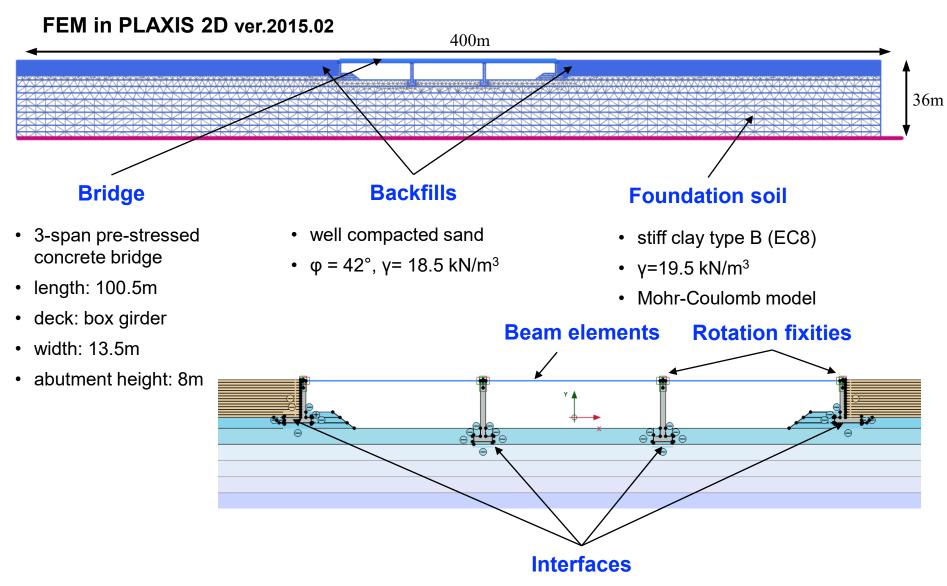
Geo-hazard effects to representative transport SoA

Fragility curves

They describe the probability of exceeding a certain limit state (e.g. minor, moderate, extensive damage, collapse) as a function of a hazard intensity measure (e.g. PGA for earthquake, permanent ground displacement for ground movements, peak water discharge for flooding).



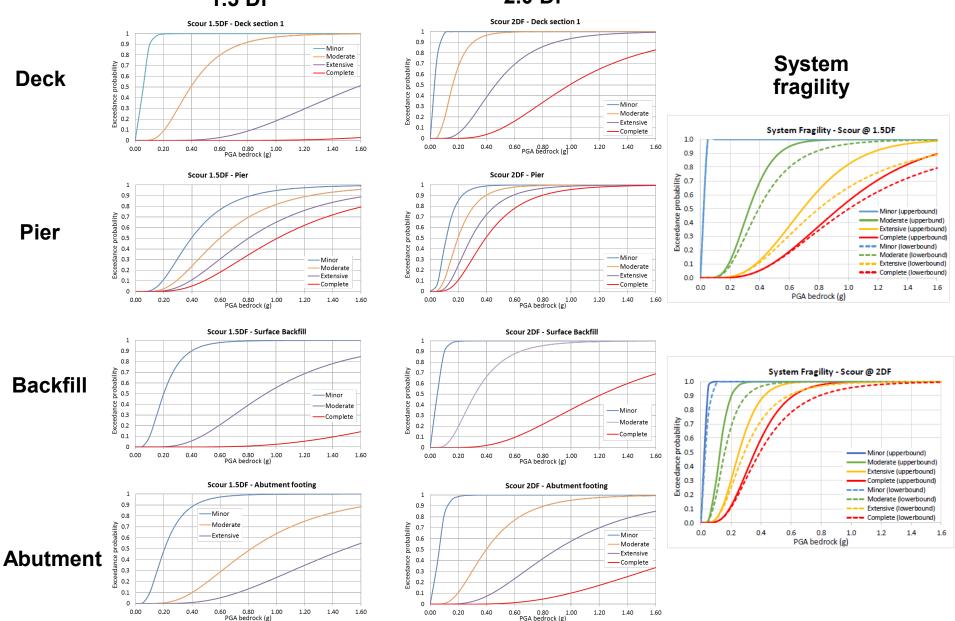
Commonly or typically they are expressed with lognormal functions


Developed with different approaches:

- Empirical (observed data)
- Expert judgment (elicitation data)
- Analytical (numerical simulation)
- Hybrid (combination)

Fragility models

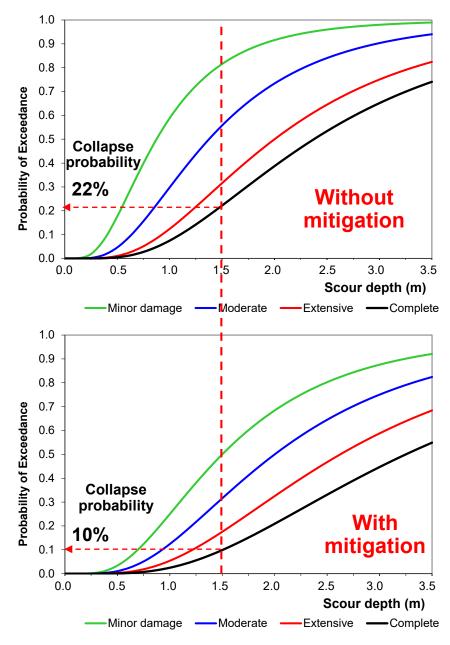
Numerical fragility model for integral bridge-backfill system



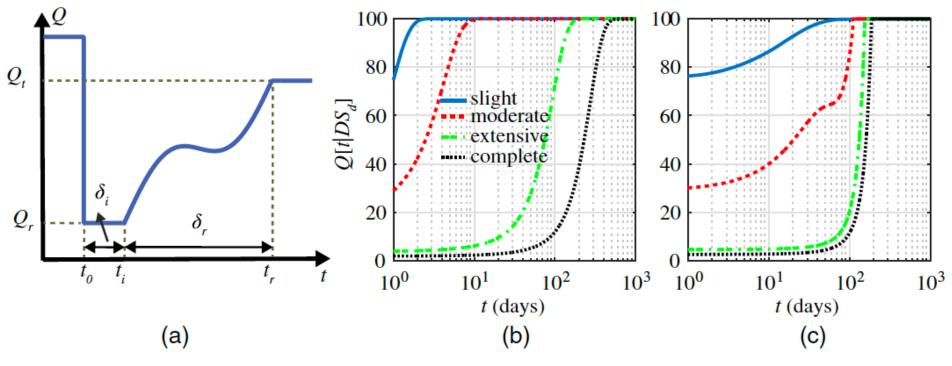
Argyroudis S, Mitoulis S, Kaynia AM, Winter MG (2018b). Fragility assessment of transportation infrastructure systems subjected to earthquakes. Geotechnical Earthquake Engineering and Soil Dynamics V, June 10-13, Austin, Texas, USA, <u>Geotechnical Special</u> <u>Publication</u> (GSP 292), pp 174-183

Numerical fragility curves for integral bridge

1.5 Df


2.0 Df

Effect of mitigation measures on the fragility of a bridge

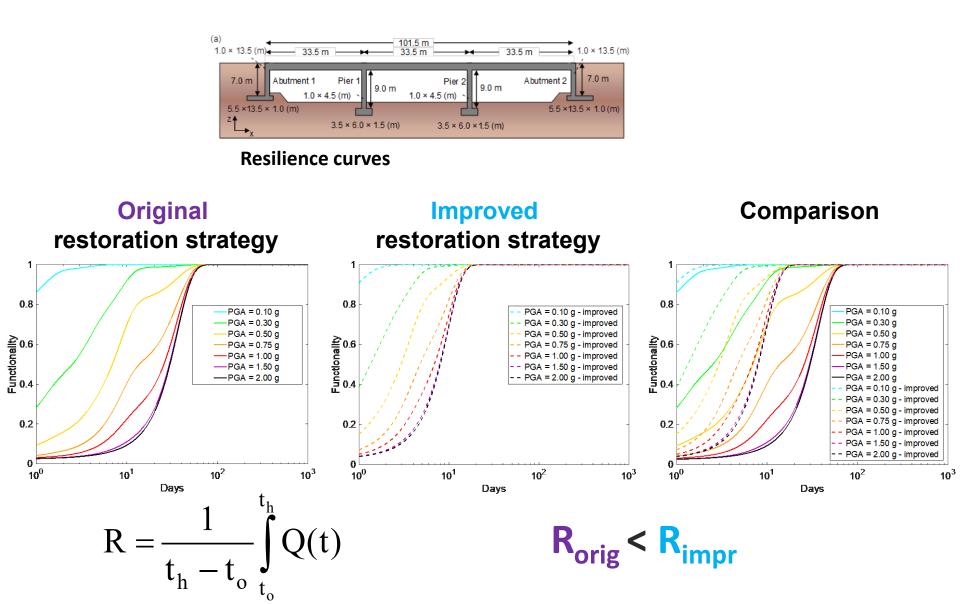


Gabions for scour protection

note: these are hypothetical fragility curves

Restoration models

(a) illustration of functionality recovery process


(b) Hazus (2011)

(c) Multi-parameter sinusoidal model (Bocchini et al.)

4R : Robustness, Redundancy, Resourcefulness, Rapidity

Resilience analysis

Improving resilience of a bridge with different restoration strategies

Survey for bridge restoration after floods for generating resilience models

Contents:

- 1. Instructions,
- 2. Restoration tasks,
- 3. Quantification of the fragility and restoration of a 3-span pre-stressed concrete bridge,
- 4. Foundations,
- 5. Piers,
- 6. Abutments & wingwalls,
- 7. Bearings,
- 8. Deck,
- 9. Backfill & approach slab

Estimate for each damage state:

- Idle or lag time (e.g. emergency response, removal of standing water, inspection and condition assessment, site investigation, structural and foundation evaluation, design of measures, including organisational barriers)

- % traffic capacity (% of the normal bridge capacity) in 0, 24 hours, 3, 7, 30, 60, 90, 180, 270, 365 days

- Restoration task(s)
- Cost ratio: a ratio of the construction cost of the entire bridge

Survey for bridge restoration after floods for generating resilience models

code	restoration task	duration (days)			
Coue	restoration task	minimum	maximum		
(1)	(2)	(3)	(4)		
R0	no action is required	na	na		
R1	armouring countermeasures and flow-altering				
R2	temporary support per pier				
R3	temporary support of one abutment				
R4	temporary support of one deck span /segment (midspan or support)				
R5	repair cracks and spalling with epoxy and/or concrete				
R6	re-alignment and/or leveling of pier				
R7	re-alignment of bearings				
R8	jacketing or local strengthening (pier or abutment or foundation)				
R9	jacketing or local strengthening (deck)				
R10	re-alignment of deck segment				
R11	erosion protection measures				
R12	rip-rap and/or gabions for filling of scour hole and				
	scour protection				
R13	removal of debris				
R14	ground improvement per foundation				
R15	installation of deep foundation system				
R16	extension of foundation footing				
R17	reconstruction/replacement of the abutment and wingwalls				
R18	reconstruction/replacement of the pier				
R19	temporary support and replacement of the bearings				
R20	replacement of the backfill and approach slab and mudjacking				
R21	replacement of expansion joint				
R22	demolish/replacement of a deck span/segment				
R23	demolish/replacement of the bridge				
R24	please add customised task				
R25	please add customised task				
R26	please add customised task				
R27	please add customised task				

Restoration times for different restoration tasks

Restoration of hydraulic induced damage to spread foundations

Damage	Idle time (before any restoration works)		Restoration time in days (after the initiation of the restoration works)								Restoration	Cost ratio		
level (see Table 4 for			0	1	3	7	30	60	90	180	270	365	tasks & prioritisation	(% of replacement cost of the
description)								(see Table 2)	bridge)					
(1)	(2)	(3)		(4)					(5)	(6)				
Minor														
Moderate														
Extensive														
Complete														
Comments:			•											

Description of damage levels for hydraulic induced damage to spread foundations

Damage level	Description	Sketch
Minor	 Foundation settlement/sinking: < 20 mm Foundation rotation/differential settlement: < 2‰ Minor spalling (damage requires no more than cosmetic repair): crack width < 0.3mm Scour hole depth and extent: 1.0Df (where Df is the foundation depth) Safety Factor: > 3 	scour depth/extent: 1D _f cracking <0.3mm settlement / sinking < 20mm
Moderate	 Foundation settlement/sinking: 20-50 mm Foundation rotation/differential settlement: 2-4‰ Moderate cracking and spalling (foundation structurally still sound): crack width 0.3-0.6mm Scour hole depth and extent: 1.0-1.5D_f Safety Factor: 2-3 	scour depth/extent: 1-1.5Dr cracking 0.3-0.6mm settlement / sinking 20-50mm
Extensive	 Foundation settlement/sinking: 50-130 mm Foundation rotation/differential settlement: 4-6‰ Foundation degrading without collapse – shear failure (foundation structurally unsafe): crack width 0.6-3mm Reinforcement yielding Scour hole depth and extent: 1.5-2.0D_f Safety Factor: 1-2 	scour depth/extent: 1.5-2D _f rotation 4-6‰ cracking 0.6-3mm settlement / sinking 50-130mm
Complete	 Foundation settlement/sinking: >130 mm Foundation rotation/differential settlement: >6‰ Overturning of the foundation: crack width >3mm Reinforcement failure Scour hole depth and extent: >2.0Df Safety Factor: <1 	scour depth/extent: >2D _f rotation >6‰ cracking >3mm settlement /sinking >130mm

Description of damage levels for hydraulic induced damage to simply-supported deck

Damage level	Description	Sketch
Minor	 Minor spalling and cracking of the deck, cracking width: <0.3mm Vertical and/or horizontal deflections/displacements of the deck: <40mm 	displacement <40mm minor cracking <0.3mm
Moderate	 Moderate spalling and cracking of the deck, cracking width: 0.3-0.6mm Vertical and/or horizontal deflections/displacements of the deck: 40-80mm Twisting/rotation of the deck about longitudinal axis: <2‰ 	displacement 40-80mm -22 moderate cracking 0.3-0.6mm
Extensive	 Extensive spalling and cracking of the deck, cracking width: 0.6-3mm Vertical and/or horizontal deflections/displacements of the deck: 80-200mm Twisting/rotation of the deck about longitudinal axis: 2-8‰ Reinforcement or prestressed steel yields in one location Span (partial) unseating at one support 	spalling 2-8‰ where the spalling extensive cracking 0.6-3.0mm displacement 80-200mm m m m partial unseating
Complete	 Excessive spalling and cracking of the deck, cracking width: >3mm Vertical and/or horizontal deflections/displacements >2000mm Twisting/rotation of the deck about longitudinal axis: >8% Reinforcement or prestressed steel fails in multiple locations Span unseating 	shear failure, cracking >3.0mm

Description of functionality loss levels for hydraulic induced disruptions to bridge deck

Functionality loss level	Description	Sketch
Minor	 Accumulation of water due to overtopping, after extensive rainfall or flash flood: depth of water <50mm Accumulation of debris due to landsliding of adjacent slopes or flooding: thickness of debris layer* <20mm 	accumulation of water <50mm accumulation of debris <20mm
Moderate	 Accumulation of water due to overtopping, after extensive rainfall or flash flood: depth of water 50-125mm Accumulation of debris due to <u>landsliding</u> of adjacent slopes or flooding: thickness of debris layer 20-50mm 	accumulation of water 50-125mm accumulation of debris 20-50mm
Extensive	 Accumulation of water due to overtopping, after extensive rainfall or flash flood: depth of water 125-300mm Accumulation of debris due to landsliding of adjacent slopes or flooding: thickness of debris layer 50-100mm Extensive deterioration of the pavement Extensive degradation of road markings and signage (poles, barriers, etc) 	accumulation of water 125-300mm extensive deterioration of the pavement and marking accumulation of debris 50-100mm
Excessive	 Accumulation of water due to overtopping, after extensive rainfall or flash flood: depth of water >300mm Accumulation of debris due to landsliding of adjacent slopes or flooding: thickness of debris layer >100mm Excessive deterioration of the pavement Failure of road markings and signage (poles, barriers, etc) 	accumulation of deterioration of the pavement failure of signage & markings &
* The thickness of distributed	f debris corresponds to the equivalent average thickness of	of debris on the entire area of the deck if this was uniformly

References

- Argyroudis S, Mitoulis SA, Winter M, Kaynia AM (2019). Fragility of transport assets exposed to multiple hazards: State-ofthe-art review toward infrastructural resilience. Reliability Engineering and System Safety
- Argyroudis SA, Mitoulis SA, Tubaldi E, Zanini M,A (2019) Resilience assessment framework for critical infrastructure in a multi-hazard environment. Science of the Total Environment (under preparation 80%)
- Mitoulis SA, Argyroudis SA, Tubaldi E (2019) Vulnerability modelling for resilience assessment of bridges subjected to multiple hazards, ASCE Journal of Structural Engineering (under preparation 70%)
- Mitoulis S, Argyroudis S, Sextos A, Lamb R (2019). Risk and resilience of bridgeworks exposed to hydraulic hazards, IABSE2019-New York, September 4-6
- Argyroudis S, Hofer L, Zanini MA, Mitoulis S (2019). Resilience of critical infrastructure for multiple hazards: Case study on a highway bridge. ICONHIC 2019 2nd International Conference on Natural Hazards & Infrastructure, 23-26 June, 2019, Chania, Greece
- Nasiopoulos G, Mantadakis N, Pitilakis D, Argyroudis SA, Mitoulis SA (2019). Resilience of bridges subjected to earthquakes: A case study on a portfolio of road bridges. ICONHIC 2019 2nd International Conference on Natural Hazards & Infrastructure, 23-26 June, 2019, Chania, Greece
- Yuan V, Argyroudis S, Tubaldi E, Pregnolato M, Mitoulis S (2019). Fragility of bridges exposed to multiple hazards and impact on transport network resilience. SECED2019 Earthquake risk and engineering towards a resilient world, Greenwich– September 9-10
- Argyroudis S, Winter MG, Mitoulis SA (2019) Transport infrastructure ecosystems and their vulnerability to geohazards. Proceedings of the XVII ECSMGE-2019. Geotechnical Engineering foundation of the future ISBN 978-9935-9436-1-3, Reykjavik, Iceland
- Argyroudis S, Mitoulis S, Kaynia AM, Winter MG (2018a). Fragility assessment of transportation infrastructure systems subjected to earthquakes. Geotechnical Earthquake Engineering and Soil Dynamics V, June 10-13, Austin, Texas, USA.
- Argyroudis S, Mitoulis S, Winter MG, Kaynia AM (2018b). Fragility of critical transportation infrastructure systems subjected to geo-hazards. 16th European Conference on Earthquake Engineering, June 18-21, Thessaloniki, Greece.
- Tsinidis G, Papantou M, Mitoulis SA (2018). Response of integral abutment bridges subjected to a sequence of cyclic thermal loading and seismic ground shaking. Engineering and Structures (accepted)
- Caristo A, Barnes J, Mitoulis SA (2018). Numerical modelling of Integral Abutment Bridges under a large number of seasonal thermal cycles. ICE Proceedings of the Institution of Civil Engineers Bridge Engineering, 171(3): 179-190
- Tubaldi E, Mitoulis S, Ahmadi H (2018). Comparison of different models for high damping rubber bearings in seismically isolated bridges, Soil Dynamics and Earthquake Engineering 104 (2018) 329–345

References

- Kalfas KN, Mitoulis SA (2017). Performance of steel-laminated rubber bearings subjected to combinations of axial loads and shear strains. Procedia Engineering 199, 2979–2984, DOI: 10.1016/j.proeng.2017.09.533.
- Mitoulis SA, Rodriguez JR (2017). Seismic Performance of Novel Resilient Hinges for Columns and Application on Irregular Bridges. ASCE Journal of Bridge Eng., Vol. 22, No. 2.
- Kalfas K, Mitoulis S, Katakalos (2017). Numerical study on the response of steel-laminated elastomeric bearings subjected to variable axial loads and development of local tensile stresses. Engineering Structures, Vol. 134, 346-357.
- Mitoulis S, Palaiochorinou A, Georgiadis I, Argyroudis S (2016). Extending the application of integral abutment bridges in earthquake prone areas by using novel isolators of recycled materials. Earthquake Engineering and Structural Dynamics 45(14):2283–2301, doi: 10.1002/eqe.2760.
- Argyroudis S, Palaiochorinou A, Mitoulis S, Pitilakis D (2016). Use of rubberised backfills for improving the seismic response of Integral Abutment Bridges, Bull of Earthquake Eng, 14(12):3573–3590, doi: 10.1007/s10518-016-0018-1.
- Tubaldi E, Mitoulis S, Ahmadi H Muhr A (2016). A parametric study on the axial behaviour of elastomeric isolators in multispan bridges subjected to horizontal excitation, Bulletin of Earthquake Engineering, Vol. 14, No. 4, 1285-1310.
- Mitoulis SA (2016). Some open issues in the seismic design of bridges to Eurocode 8-2, Challenge Journal of Structural Mechanics, Vol. 2, No. 1, 7–13, DOI: http://dx.doi.org/10.20528/cjsmec.2016.02.002.
- Mitoulis SA, Ataria RB (2016). Effect of waste tyre rubber additive on concrete mixture strength, British Journal of Environmental Sciences Vol. 4, No. 4, 11-18.

Visit : <u>www.infrastructuResilience.com</u>