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Quantitative risk and resilience assessment

Flood hazard and bridge IMs
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Application study for bridges
in road network
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Adaptive fragility models
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Resilience-based management
of road networks to flood hazards
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> Decision-making & Risk management for owners and stakeholders !

* Redundancy and Resourcefulness enhance Rapidity and Robustness and thus reduce the Vulnerability of bridges and transportation networks



Transport Systems of Assets (SoA) in diverse ecosystems

Motorways in mountainous areas

Argyroudis S, Mitoulis SA, Winter M, Kaynia AM (2019). Fragility of transport assets exposed to multiple hazards:
State-of-the-art review toward infrastructural resilience. Reliability Engineering and System Safety




Geo-hazard effects to representative transport SoA

Debris flow (rainfall Precipitation

or earthquake induced)
W Soat:

\ Slope embankment, slope,
\ Small cutting or/and . s
\\ Translational retainingwall  Road or rail bed retalnlng structure
: Heave Argyroudis et al. 2018b
\\ slide l/ ; Rotational/Slump ( gy )
N\ ! failure
A L
9/7(/\\ Embankment -
o N | Retaining
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e N\ / structure
%o N Settlement . ground shaking or
AN liquefaction induced /
\\
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Earthquake %
Multi span bridge Road pavement
(continuous or simply supported) or rail bed Heave  Approach . Embankment
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Abutment ~ v
River
SOA2 . (deep and/or fast water) Foundation
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embankment

(Argyroudis et al 2018a)



Fragility curves

They describe the probability of exceeding a certain limit state (e.g. minor,
moderate, extensive damage, collapse) as a function of a hazard intensity
measure (e.g. PGA for earthquake, permanent ground displacement for ground
movements, peak water discharge for flooding).

Damage
probability
1.0
Minor d.amage
(functional) Developed with different
PR === approaches:
\ - Empirical (observed data)
Complete damage - Expert judgment (elicitation data)
Pc (not functional) . . . .
I - Analytical (numerical simulation)
: - Hybrid (combination)
0.0 I >
IMi Intensity
Measure

Commonly or typically they are
expressed with lognormal functions



Fragility models
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Numerical fragility model for integral bridge-backfill system

FEM in PLAXIS 2D ver.2015.02

400m
- >
Bridge Backfills Foundation soil
+ 3-span pre-stressed  well compacted sand - stiff clay type B (EC8)
concrete bridge .« @ =42° y=18.5 kN/m? . y=19.5 kN/m3

* length: 100.5m

» deck: box girder
g Beam elements Rotation fixities

. width: 13.5m o

« abutment height: 8m =§ i “/ §=
== "l_» e

 Mohr-Coulomb model
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Interfaces

Argyroudis S, Mitoulis S, Kaynia AM, Winter MG (2018b). Fragility assessment of transportation infrastructure systems subjected to
earthquakes. Geotechnical Earthquake Engineering and Soil Dynamics V, June 10-13, Austin, Texas, USA, Geotechnical Special
Publication (GSP 292), pp 174-183



https://www.scopus.com/sourceid/27028?origin=resultslist

Numerical fragility curves for integral bridge
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Effect of mitigation measures on the fragility of a bridge

Gabions
for scour
protection

note: these are hypothetical fragility curves
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Restoration models
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Resilience analysis

Improving resilience of a bridge with different restoration strategies
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Survey for bridge restoration after floods for generating
resilience models

Contents:

1. Instructions,

2. Restoration tasks,

3. Quantification of the fragility and restoration of
a 3-span pre-stressed concrete bridge,
Foundations,

Piers,

Abutments & wingwalls,

Bearings,

Deck,

Backfill & approach slab

© N OKA

Estimate for each damage state:

- Idle or lag time (e.g. emergency response, removal of standing water, inspection and
condition assessment, site investigation, structural and foundation evaluation, design of
measures, including organisational barriers)

- % traffic capacity (% of the normal bridge capacity) in 0, 24 hours, 3, 7, 30, 60, 90, 180,
270, 365 days

- Restoration task(s)
- Cost ratio: a ratio of the construction cost of the entire bridge



Survey for bridge restoration after floods for generating

resilience models

restoration task

no action is required
BTN armouring countermeasures and flow-altering
PP temporary support per pier
temporary support of one abutment
temporary support of one deck span /segment
(midspan or support)
repair cracks and spalling with epoxy and/or
concrete
re-alignment and/or leveling of pier
re-alignment of bearings
jacketing or local strengthening (pier or abutment
or foundation)
BTN jacketing or local strengthening (deck)
re-alignment of deck segment
BNTER erosion protection measures
rip-rap and/or gabions for filling of scour hole and
scour protection
removal of debris
IR ground improvement per foundation
BIEN installation of deep foundation system
PIT extension of foundation footing

R17 reconstruction/replacement of the abutment and
wingwalls
reconstruction/replacement of the pier
temporary support and replacement of the
bearings
replacement of the backfill and approach slab
and mudjacking
replacement of expansion joint
P77 demolish/replacement of a deck span/segment
P PEI demolish/replacement of the bridge
PP please add customised task
B please add customised task
please add customised task
please add customised task

duration (days)

minimum maximum

)

na

(4)

na

Restoration times for
different restoration tasks



Survey for bridge restoration after floods

Restoration of hydraulic induced damage to spread foundations

Idle time

Damage Restoration time in days (after the initiation of the restoration works) Cost ratio
level (before any Restoration (% of
e ||| PO 1 3 7 30 | 60 | 90 | 180 | 270 | 365 & lcement
works) prioritisation
4 for (see Table 2) casbofiie
description) min max % traffic capacity of the bridge after damage bridge)
(D 2 €) 4 ) Q)
Minor
Moderate
Extensive
Complete

Comments:




Survey for bridge restoration after floods

Description of damage levels for hydraulic induced damage to spread foundations

Damage

Descripti ketch
level escription Sketc

- Foundation settlement/sinking: <20 mm

- Foundation rotation/differential settlement: < 2%o o

- Minor spalling (damage requires no more than cosmetic 1D rotation <2%.

Minor repair): crack width < 0.3mm

- Scour hole depth and extent: 1.0Dt (where Dr is the
foundation depth)

- Safety Factor]> 3

- Foundation settlement/sinking: 20-50 mm

- Foundation rotation/differential settlement: 2-4%o

- Moderate cracking and spalling (foundation structurally still
sound): crack width 0.3-0.6mm

- Scour hole depth and extent: 1.0-1.5D¢

- Safety Factor: 2-3

- Foundation settlement/sinking: 50-130 mm

- Foundation rotation/differential settlement: 4-6%o scour depth/extent:

- Foundation degrading without collapse — shear failure

Extensive (foundation structurally unsafe): crack width 0.6-3mm

- Reinforcement yielding

- Scour hole depth and extent: 1.5-2.0D¢

- Safety Factor: 1-2

- Foundation settlement/sinking: >130 mm

- Foundation rotation/differential settlement: >6%o

- Overturning of the foundation: crack width >3mm

- Reinforcement failure

- Scour hole depth and extent: >2.0Ds

- Safety Factor: <1

Moderate

scour depth/extent:

Complete




Survey for bridge restoration after floods

Description of damage levels for hydraulic induced damage to simply-supported deck

Damage

level Description Sketch
displacement
{ <40mm
- Minor spalling and cracking of the deck, cracking width:
Minor <0.3mm minor cracking
- Vertical and/or horizontal deflections/displacements of the
deck: <40mm
displacement
- Moderate spalling and cracking of the deck, cracking width: ALl
0.3-0.6mm
Moderate | - Vertical and/or horizontal deflections/displacements of the mmera:)e_f.rg f;':i,nrﬁ
deck: 40-80mm
- Twisting/rotation of the deck about longitudinal axis: <2%o
- gl);tznsive spalling and cracking of the deck, cracking width: spalling ! g‘os_g'ggﬁ:‘nem
- Vertical and/or horizontal deflections/displacements of the
Extensive deck: 80-200mm extensive cracking || Partial
- Twisting/rotation of the deck about longitudinal axis: 2-8%o SiB-thoe fy ssatng
- Reinforcement or prestressed steel yields in one location | R | _g
- Span (partial) unseating at one support
- Excessive spalling and cracking of the deck, cracking width: spall’ | displacement
>3mm
Complete | Vertical and/or horizontal deflections/displacements >2000mm . T
- Twisting/rotation of the deck about longitudinal axis: >8%o cracking >3.0mm .
- Reinforcement or prestressed steel fails in multiple locations R
- Span unseating




Survey for bridge restoration after floods

Description of functionality loss levels for hydraulic induced disruptions to bridge deck

Functionali root]
ty Description Sketch
loss level
accumulation of
water <50mm
- Accumulation of water due to overtopping,
after extensive rainfall or flash flood: depth of
Miiiox water <50mm
- Accumulation of debris due to landsliding of -
adjacent slopes or flooding: thickness of . f -
debris layer* <20mm accumulation of N
debris <20mm
accumulation of
water 50-125mm
- Accumulation of water due to overtopping,
after extensive rainfall or flash flood: depth of
Moderat water 50-125mm
oderate - Accumulation of debris due to landsliding of
adjacent slopes or flooding: thickness of *k’;. f
debris layer 20-50mm I \ ‘
debris 20-50mm
- Accumulation of water due to overtopping, accumulation of
: y 125-300 ive deteriorati
after extensive rainfall or flash flood: depth of NI (2] e;ﬁﬂ:“,;eav:;?;ﬁr:ﬂzn
water 125-300mm - : marking
- Accumulation of debris due to landsliding of
Extensive adjacent slopes or flooding: thickness of yse 5
debris layer 50-100mm A%, q~
- Extensi teriorati fth t
xtensive de erioration of the pavemen s N
- Extensive degradation of road markings and accumulation of ~ &8
signage (poles, barriers, etc) GEEEB R
- Accumulatif)n of 'water due to overtopping, et of deisnelionofihe
after extensive rainfall or flash flood: depth of | water>300mm pavement
failure of signage
water >300mm 4 N R\ & markings
- Accumulation of debris due to landsliding of S
Excessive ad_]ac':ent slopes or flooding: thickness of X i
debris layer >100mm b SOy
. . . s“‘ﬁ*"’!{’iﬁi’ﬁ' 3y
- Excessive deterioration of the pavement \\\, ¥ f < < 35353853
_ . . . o -
Falh'xre of road markings and signage (poles, o
barriers, etc) debris >100mm "“g"»% B
* The thickness of debris corresponds to the equivalent average thickness of debris on the entire area of the deck if this was uniformly
distributed
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